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Abstract
In this paper the complex dielectric permittivity of gallium doped Cd0.99Mn0.01Te mixed
crystals is studied at different temperatures. We observe a two-power-law relaxation pattern
with m and n, the low- and high-frequency power-law exponents respectively, satisfying the
relation m < 1 − n. To interpret the empirical result we propose a correlated-cluster relaxation
mechanism. This approach allows us to find origins of both power-law exponents, m and n.

1. Introduction

Gallium (Ga) doped Cd1−x Mnx Te is a group II–VI semicon-
ductor, possessing deep metastable defects, called DX centers.
The metastable character of the DX centers makes this mixed
crystal a candidate for application in holography and high-
density data storage [1]. It is fairly indisputable that the
defects present in the material influence its properties [2, 3]
and, at the same time, limit the parameters of devices based
on them. Therefore, not only the development of experimental
investigations but also that of theoretical studies is a crucial
issue for gathering information concerning the properties of
semiconductor mixed crystals with DX centers.

The DX centers are formed during the transition of
Ga atoms from the substitutional position in the crystal
lattice (shallow donor state) to the interstitial one (deep
state). A passage from the shallow donor position to the
DX state appears after the capturing of an electron by
the dopant. Various charge states of the gallium dopant
correspond to different placements of Ga atoms in the
CdMnTe lattice. It has been found that the incomplete
occupation of impurity states yields mutual correlation of
the charge positions [4]. Consequently, positively and
negatively charged impurities may form dipole-like objects.
The presence of spatial correlations between the DX centers
of different charge states was experimentally confirmed for
HgSe:Fe, Hg1−x Mnx Se:Fe [5], GaAs [6], GaAs:Si [7],
Al1−xGaxAs:Si [8] and CdTe:In [9]. Here, we present further
evidence of the spatial correlations between the DX centers of
different charge states. We analyze the dielectric spectroscopy
data obtained for the gallium doped Cd1−xMnx Te. We

argue that the frequency-domain relaxation response of this
material, exhibiting low- and high-frequency fractional power
laws, is characteristic for dipolar complex systems, i.e. the
relaxation pattern is clearly of the non-Debye type. However,
the main objective of this paper is to highlight the possible
mechanisms underlying the observed relaxation properties of
the material investigated. Our studies, based on the relaxation
scenario of the correlated-cluster systems [10–12], explain
the microscopic origins of the power-law exponents found
experimentally.

2. Experiment

Gallium doped Cd0.99Mn0.01Te:Ga mixed crystals used in
this study were processed by the Bridgman method. The
room temperature net donor concentration, estimated from
the capacitance–voltage (CV) characteristics, was found to be
in the order of 1015 cm −3. Gold Schottky contacts were
thermally evaporated on the front side of the samples. The
dielectric properties of the material were investigated using a
Novocontrol impedance analyzer. The applied ac probe signal
amplitude was equal to 10 mV. Measurements were performed
at zero bias, in the frequency range from 0.2 Hz to 3 MHz, at
temperatures in the range from 77 to 300 K.

3. Results and discussion

In figure 1 a sample complex permittivity ε∗(ω) = ε′(ω) −
iε′′(ω) plot obtained for Cd0.99Mn0.01Te:Ga is presented in
the Cole–Cole representation. It is known that for dipolar
materials, relaxing in a manner similar to the classical Debye
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Figure 1. The complex permittivity diagrams (Cole–Cole plots) for two different temperatures. The asymmetric peak is a fingerprint of the
non-Debye relaxation response of the sample investigated.

Figure 2. Double-logarithmic plots of the imaginary modulus M ′′
and impedance Z ′′ versus frequency, measured at two different
temperatures.

behavior, the ε′′(ω) versus ε′(ω) plot approximates a semi-
circle [13, 14]. However, for the material investigated
the complex plane representation revealed an asymmetric,
broadened peak implying a non-Debye relaxation pattern. The
non-Debye relaxation of the sample was also confirmed by
analysis of the dependence on frequency of the imaginary
parts of the complex modulus M∗(ω) and impedance Z∗(ω),
interrelated with the complex permittivity ε∗(ω) as follows:

ε∗(ω) = 1/M∗(ω),

M∗(ω) = M ′(ω) + iM ′′(ω) = iωC0 Z∗(ω),

where C0 denotes the vacuum capacitance of the sample
holder and electrode arrangement. It is represented by a
shift of the maximum of the modulus M ′′(ω) and impedance
Z ′′(ω) corresponding to the same temperature (cf figure 2).
Moreover, regardless of the temperature, in both the Z ′′(ω)

and M ′′(ω) curves single maximal peaks are detected. This
observation indicates that the measured response is mainly
influenced by the deep trap level located in the depletion region
of the Au–Cd0.99Mn0.01Te:Ga Schottky junction investigated.
Basically, the dominant trap in Cd1−xMnxTe:Ga is the DX
center associated with the gallium dopants [15]. Hence,

Figure 3. Double-logarithmic imaginary modulus and impedance
versus frequency plots measured at different temperatures.

the relaxation response of this material is dominated by the
metastable traps.

In figure 3 the normalized imaginary part of the complex
permittivity ε∗(ω) is depicted. The normalization results
in a master curve exhibiting also a single peak. Such
a peak observed in the dielectric response of a sample is
characteristic for dipolar systems [13, 14]. Indeed, this
observation confirms the preliminary assumption of a dipole-
like interaction between DX centers in different charge
states. Dipolar properties of the system considered are not
surprising at all. The relaxation behavior of the defects
is studied experimentally, in response to a small oscillating
voltage. At low frequencies (or high temperatures) the deep
traps are expected to respond to the test signal, whereas
at high frequencies (or low temperatures) the relaxation
rates of the traps may be too small for this to happen.
Besides, even within the same frequency or temperature
regime there could appear traps which may not change
their occupancy fast enough to contribute to the effective
relaxation response. As a consequence, interaction between the
deep defects responding instantaneously (emptied, positively
charged centers—DX+) and these which cannot emit carriers
sufficiently fast (occupied, negatively charged centers—DX−)
is very probable. Moreover, it is clear from figure 3
that the dielectric response of Cd0.99Mn0.01Te:Ga follows the
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anomalous relaxation mechanism [13, 14] represented by low-
and high-frequency power-law dependence of the absorption
term on frequency:

ε′′(ω) ∼ (ω/ωp)
m for ω → 0,

ε′′(ω) ∼ (ω/ωp)
n−1 for ω → ∞,

(1)

where ωp denotes the loss peak frequency and 0 < m,
n < 1. Similar two-power-law relaxation behavior (1) was
observed by us in indium (In) doped Cd1−xMnxTe; however,
detailed analysis for this material will be a subject of another
study. It should be pointed out that for the Cd0.99Mn0.01Te:Ga
investigated, the fitting parameters satisfy the relation m <

1 − n which cannot be interpreted by means of the well-known
Havriliak–Negami function [13, 16] yielding the opposite
inequality m � 1 − n. To interpret the physical significance
of the experimental result for the gallium doped semiconductor
mixed crystals we propose a stochastic mechanism which leads
to a generalized Mittag-Leffler relaxation.

4. The relaxation model

Let us denote by N the number of the DX centers present
in the system under consideration. Assume that some of
the positively and negatively charged centers form dipole-
like objects. The number KN of dipoles formed is unknown
(random). Assuming additionally that the i th dipole is
surrounded by a random number Ni of single centers of the
same charge, we note that KN is equal to the largest number k
such that

∑k
i=1 (Ni + 1) � N .

It is known that relaxations of the neighboring dipoles in
a complex dipolar system may be correlated [12, 13]. The
random number of the cooperating dipoles hence determines
cooperative regions (superclusters) of sizes M1, M2, . . .. The
number L N of randomly sized clusters (which itself is random)
is equal to the largest l such that

∑l
j=1 M j � KN .

Following the most natural (historically oldest) approach
to relaxation [13], the nonexponentiality of the relaxation
behavior may be assigned to different local properties of the
system investigated and interpreted in terms of a superposition
of exponentially relaxing processes. The relaxation function
�(t) is then assumed to take the form of a weighted average
〈e−β̃ t〉 with respect to the distribution of the effective (total)
relaxation rate β̃:

�(t) = 〈e−β̃ t 〉 =
∫ ∞

0
e−bt g(b) db, (2)

where g(b) is the probability density function of the effective
relaxation rate. The relaxation rate of the system as a whole
is a sum of all L N supercluster contributions. Similarly, the
particular supercluster relaxation rate results from summing
up the contributions of all dipole-like objects present in this
cluster. Hence, the random total relaxation rate β̃N reads

β̃N =
L N∑

j=1

M j∑

i=1

βi j N , (3)

where βi j N is the contribution of the i th dipole of the j th
supercluster.

If the number N of DX centers in the material investigated
is large (in practice it is enough when N ∼ 106), one can
replace β̃N with its limit in distribution β̃ as N → ∞. The
limiting random variable β̃ , representing the effective behavior
of the relaxing system, is well defined even with rather limited
knowledge about the distributions of microscopic quantities:
Ni s, M j s, and βi j N s. To apply the limit theorems for the
sum (3) of the random relaxation rates we have to assume that:
(i) βi j N = A−1

N βi j for some appropriately chosen constant
AN > 0 and a random variable βi j , (ii) the sequences
of random variables Ni s, M j s, and βi j s are stochastically
independent, and (iii) each sequence consists of independent
and identically distributed nonnegative random variables. If
the random variables under considerations have heavy-tailed
distributions with the tail exponents 0 < λ, γ, α < 1 and
the scaling constants ν0, μ0, b0 > 0, respectively3, and AN =
N1/α , then the relaxation function (2) takes the following form:

�(t) =
∫ ∞

0
e−bt/τ0 gα,λ,γ (b) db (4)

with the characteristic material constant τ0 = b−1
0 (

νλ
0 �(1−λ)

�(1−α)
)1/α ,

where �(·) denotes the gamma special function. The effective
relaxation rate probability density function gα,λ,γ (b) reads

gα,λ,γ (b) =
∫ ∞

0

∫ ∞

0
x−1/αsα(x−1/αb)

1

λ
y1/λsλ(y1/λ)

× hγ (xy) dxdy.

Here sa(x) is the probability density function of a completely
asymmetric a-stable distribution such that

∫ ∞
0 e−t x sa(x)dx =

e−ta
(for a = α or λ); and hγ (x) = (�(γ )�(1 −

γ ))−1xγ−1(1 − x)−γ for 0 < x < 1, and 0 otherwise,
i.e. hγ (x) is the probability density function of a generalized
arcsine distribution with parameter γ . Hence, the effective
relaxation rate distribution gα,λ,γ (b) is rather complex and
can be interpreted as a mixture of the α-stable distribution
sα(x), the λ-trans-stable distribution 1

λ
x1/λsλ(x1/λ), and the γ -

generalized arcsine distribution hγ (x).
Formula (4) can be rewritten into an equivalent, simpler

form:

�(t) =
∫ ∞

0
e−b(t/τ0)

α

g(0)
λ,γ (b) db (5)

with

g(0)
λ,γ (b) =

∫ ∞

0

1

λ
x1/λsλ(x1/λ)hγ (bx) dx

which is a mixture of the λ-trans-stable and the γ -generalized
arcsine distributions only. For α = λ the relaxation function
coincides with the generalized Mittag-Leffler relaxation
function �GML(t) with parameters λ, γ [17]. The type of
relaxation response corresponding to this relaxation function

3 The distribution of a nonnegative random variable, say X , has a heavy-
tailed distribution if for large values of x the tail function Pr(X > x) exhibits
a fractional power law (x/x0)

−a for some exponent 0 < a < 1 and scaling
constant x0 > 0. The physical sense of the random variable X determines
the dimension of the scaling constant x0; hence ν0 and μ0 are dimensionless,
while b0 [s−1].
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was shown to exhibit two fractional power-law properties (1)
with n = 1 − λ, m = λγ < 1 − n. In the case
of arbitrary 0 < α < 1, we have �(t) = �GML(tα/λ).
Hence, the time-domain response function f (t) = − d�(t)

dt
reads as f (t) = α

λ
tα/λ−1 fGML(tα/λ). As a consequence,

in the more general case also, the corresponding frequency-
domain response ε∗(ω) ∝ ∫ ∞

0 e−iωt f (t) dt satisfies the two-
power-law property (1) with the power-law exponents n =
1 − α and m = αγ < 1 − n. Let us observe that
the distribution of single centers Ni related to a particular
dipole-like object does not influence the power-law exponents.
Instead, it does influence the characteristic material constant.
The low-frequency exponent m arises from the distribution of
the cluster sizes (determined by the mutual correlation between
dipoles formed in the system) and the distribution of their
relaxation rates. The high-frequency exponent n is related to
the distribution of the individual dipole relaxation rate only.

5. Conclusions

In this paper the dielectric permittivity of gallium doped
Cd0.99Mn0.01Te was analyzed. It was found that the frequency-
domain relaxation response of the sample studied exhibits a
two-power-law pattern with m = αγ and n = 1 − α,
the low-and high-frequency power-law exponents respectively,
satisfying the relation m < 1 − n. A complete understanding
of the relaxation mechanism, underlying this response, requires
an explanation of the microscopic origins of the parameters α

and γ , both falling in the range (0, 1). As far as α is concerned,
the progress in the understanding of this parameter was already
made a few years ago (see [18] and the references therein).
It has been shown that this parameter arises naturally from
the microscopic anisotropy which gives rise to a hierarchy of
relaxation rates (relaxation times) not all of which have the
same probability of occurrence. As we have shown above,
the parameter α has its origin in the heavy-tailed individual
dipole relaxation rate distribution. This microscopic property
indicates the scale invariance of the relaxation rates in the
Cd0.99Mn0.01Te:Ga investigated (i.e., regardless of the scale
at which one is looking at the relaxation rate distribution,
the same proportion of smaller and larger contributions to
the effective, macroscopic relaxation rate would be detected).
As regards interpretation of the parameter γ , the analysis
presented shows that it arises from the scale invariant clustered
structure of the material, i.e., from the heavy-tailed distribution
of the supercluster sizes. In other words, γ has its origin in
long-range dipole–dipole interaction yielding the heavy-tailed
distribution of the cooperative-region sizes. Summing up:

• For the first time we have derived the generalized Mittag-
Leffler relaxation function starting from the correlated-
cluster-system relaxation scenario. As we have shown,
this function is able to reproduce relaxation patterns
observed for Cd0.99Mn0.01Te:Ga, not interpretable by
means of the well-known and commonly used Havriliak–
Negami function.

• We have confirmed not only the existence of short-range
defect–defect interactions, yielding dipole-like objects in

the material investigated, but also stated the presence of
interactions among the (DX−–DX+) dipoles, which was
not previously reported.

• The proposed model, taking into account the local
randomness resulting from the microscopic anisotropy
as well as the dipole–dipole interaction, explains
the experimentally observed relaxation pattern of the
material analyzed. Hence, the cooperative dipole–dipole
regions (superclusters), responsible for the low-frequency
relaxation properties, may be expected in materials
possessing DX centers.

• Searching for the origins of the power-law exponents
we have brought to light the scale invariant spatio-
temporal properties of the material studied. We have
also shown that the distribution of the number of the DX
centers, surrounding the dipole-like (DX−–DX+) object,
influences the characteristic material time constant only
and is not related to the power-law exponents.
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